25 research outputs found

    A Robotic Visual Grasping Design: Rethinking Convolution Neural Network with High-Resolutions

    Full text link
    High-resolution representations are important for vision-based robotic grasping problems. Existing works generally encode the input images into low-resolution representations via sub-networks and then recover high-resolution representations. This will lose spatial information, and errors introduced by the decoder will be more serious when multiple types of objects are considered or objects are far away from the camera. To address these issues, we revisit the design paradigm of CNN for robotic perception tasks. We demonstrate that using parallel branches as opposed to serial stacked convolutional layers will be a more powerful design for robotic visual grasping tasks. In particular, guidelines of neural network design are provided for robotic perception tasks, e.g., high-resolution representation and lightweight design, which respond to the challenges in different manipulation scenarios. We then develop a novel grasping visual architecture referred to as HRG-Net, a parallel-branch structure that always maintains a high-resolution representation and repeatedly exchanges information across resolutions. Extensive experiments validate that these two designs can effectively enhance the accuracy of visual-based grasping and accelerate network training. We show a series of comparative experiments in real physical environments at Youtube: https://youtu.be/Jhlsp-xzHFY

    Vision-Based Reactive Planning and Control of Quadruped Robots in Unstructured Dynamic Environments

    Full text link
    Quadruped robots have received increasing attention for the past few years. However, existing works primarily focus on static environments or assume the robot has full observations of the environment. This limits their practical applications since real-world environments are often dynamic and partially observable. To tackle these issues, vision-based reactive planning and control (V-RPC) is developed in this work. The V-RPC comprises two modules: offline pre-planning and online reactive planning. The pre-planning phase generates a reference trajectory over continuous workspace via sampling-based methods using prior environmental knowledge, given an LTL specification. The online reactive module dynamically adjusts the reference trajectory and control based on the robot's real-time visual perception to adapt to environmental changes

    Region Proposal Rectification Towards Robust Instance Segmentation of Biological Images

    Full text link
    Top-down instance segmentation framework has shown its superiority in object detection compared to the bottom-up framework. While it is efficient in addressing over-segmentation, top-down instance segmentation suffers from over-crop problem. However, a complete segmentation mask is crucial for biological image analysis as it delivers important morphological properties such as shapes and volumes. In this paper, we propose a region proposal rectification (RPR) module to address this challenging incomplete segmentation problem. In particular, we offer a progressive ROIAlign module to introduce neighbor information into a series of ROIs gradually. The ROI features are fed into an attentive feed-forward network (FFN) for proposal box regression. With additional neighbor information, the proposed RPR module shows significant improvement in correction of region proposal locations and thereby exhibits favorable instance segmentation performances on three biological image datasets compared to state-of-the-art baseline methods. Experimental results demonstrate that the proposed RPR module is effective in both anchor-based and anchor-free top-down instance segmentation approaches, suggesting the proposed method can be applied to general top-down instance segmentation of biological images. Code is available

    Acoustic separation of circulating tumor cells

    Get PDF
    Circulating tumor cells (CTCs) are important targets for cancer biology studies. To further elucidate the role of CTCs in cancer metastasis and prognosis, effective methods for isolating extremely rare tumor cells from peripheral blood must be developed. Acoustic-based methods, which are known to preserve the integrity, functionality, and viability of biological cells using label-free and contact-free sorting, have thus far not been successfully developed to isolate rare CTCs using clinical samples from cancer patients owing to technical constraints, insufficient throughput, and lack of long-term device stability. In this work, we demonstrate the development of an acoustic-based microfluidic device that is capable of high-throughput separation of CTCs from peripheral blood samples obtained from cancer patients. Our method uses tilted-angle standing surface acoustic waves. Parametric numerical simulations were performed to design optimum device geometry, tilt angle, and cell throughput that is more than 20 times higher than previously possible for such devices. We first validated the capability of this device by successfully separating low concentrations (~100 cells/mL) of a variety of cancer cells from cell culture lines from WBCs with a recovery rate better than 83%. We then demonstrated the isolation of CTCs in blood samples obtained from patients with breast cancer. Our acoustic-based separation method thus offers the potential to serve as an invaluable supplemental tool in cancer research, diagnostics, drug efficacy assessment, and therapeutics owing to its excellent biocompatibility, simple design, and label-free automated operation while offering the capability to isolate rare CTCs in a viable state.National Institutes of Health (U.S.) (Grant 1 R01 GM112048-01A1)National Institutes of Health (U.S.) (Grant 1R33EB019785-01)National Science Foundation (U.S.)Penn State Center for Nanoscale Science (Materials Research Science and Engineering Center Grant DMR-0820404)National Institutes of Health (U.S.) (Grant U01HL114476

    Epigenetic control of embryo–uterine crosstalk at peri-implantation

    Get PDF
    Abstract(#br)Embryo implantation is one of the pivotal steps during mammalian pregnancy, since the quality of embryo implantation determines the outcome of ongoing pregnancy and fetal development. A large number of factors, including transcription factors, signalling transduction components, and lipids, have been shown to be indispensable for embryo implantation. Increasing evidence also suggests the important roles of epigenetic factors in this critical event. This review focuses on recent findings about the involvement of epigenetic regulators during embryo implantation

    Rapid Glacier Shrinkage in the Gongga Mountains in the Last 27 Years

    No full text
    Glaciers are an important part of the cryosphere and important reservoirs of fresh water on Earth. Glaciers in the Gongga Mountains, located in the southeastern Tibetan Plateau, have been experiencing dramatic changes and substantially shrinking over the past two decades. We analyzed the glacier change over the Gongga Mountains using the Landsat data from 1994 to 2021 (interval of 4 or 5 years), with Gaofen-1 (GF-1) data to evaluate the uncertainty. The glacier shrinkage under different terrain conditions, including altitudes, slope, and slope direction, was further explored. Finally, we evaluated the response of glacier shrinkage to climate change using precipitation and temperature data for nearly 30 years. Results show that the glaciers in the Gongga Mountains are experiencing an accelerating ablation, with a glacier area of ~240 km2 in 1994 and ~212 km2 in 2021 (an average annual shrinkage rate of 1.04 km2/a). The shrinkage mainly occurs in areas with altitudes of 5000–5300 m and a slope of 30–40°. Moreover, the shrinkage is strongly related to the recent warming of the climate, with the warming rate being 0.19 °C/10a, while precipitation remains almost constant during 1978–2019. The results provide a scientific basis for water resources management, ecological environmental protection, and natural disaster protection in southeast Tibet for decision making

    When Transformer Meets Robotic Grasping: Exploits Context for Efficient Grasp Detection

    Full text link
    In this paper, we present a transformer-based architecture, namely TF-Grasp, for robotic grasp detection. The developed TF-Grasp framework has two elaborate designs making it well suitable for visual grasping tasks. The first key design is that we adopt the local window attention to capture local contextual information and detailed features of graspable objects. Then, we apply the cross window attention to model the long-term dependencies between distant pixels. Object knowledge, environmental configuration, and relationships between different visual entities are aggregated for subsequent grasp detection. The second key design is that we build a hierarchical encoder-decoder architecture with skip-connections, delivering shallow features from encoder to decoder to enable a multi-scale feature fusion. Due to the powerful attention mechanism, the TF-Grasp can simultaneously obtain the local information (i.e., the contours of objects), and model long-term connections such as the relationships between distinct visual concepts in clutter. Extensive computational experiments demonstrate that the TF-Grasp achieves superior results versus state-of-art grasping convolutional models and attain a higher accuracy of 97.99% and 94.6% on Cornell and Jacquard grasping datasets, respectively. Real-world experiments using a 7DoF Franka Emika Panda robot also demonstrate its capability of grasping unseen objects in a variety of scenarios. The code and pre-trained models will be available at https://github.com/WangShaoSUN/grasp-transforme

    Elasto-Inertial Focusing Mechanisms of Particles in Shear-Thinning Viscoelastic Fluid in Rectangular Microchannels

    No full text
    Growth of the microfluidics field has triggered numerous advances in focusing and separating microparticles, with such systems rapidly finding applications in biomedical, chemical, and environmental fields. The use of shear-thinning viscoelastic fluids in microfluidic channels is leading to evolution of elasto-inertial focusing. Herein, we showed that the interplay between the elastic and shear-gradient lift forces, as well as the secondary flow transversal drag force that is caused by the non-zero second normal stress difference, lead to different particle focusing patterns in the elasto-inertial regime. Experiments and 3D simulations were performed to study the effects of flowrate, particle size, and the shear-thinning extent of the fluid on the focusing patterns. The Giesekus constitutive equation was used in the simulations to capture the shear-thinning and viscoelastic behaviors of the solution used in the experiments. At low flowrate, with Weissenberg number Wi ~ O(1), both the elastic force and secondary flow effects push particles towards the channel center. However, at a high flowrate, Wi ~ O(10), the elastic force direction is reversed in the central regions. This remarkable behavior of the elastic force, combined with the enhanced shear-gradient lift at the high flowrate, pushes particles away from the channel center. Additionally, a precise prediction of the focusing position can only be made when the shear-thinning extent of the fluid is correctly estimated in the modeling. The shear-thinning also gives rise to the unique behavior of the inertial forces near the channel walls which is linked with the ‘warped’ velocity profile in such fluids

    Evolution of focused streams for viscoelastic flow in spiral microchannels

    No full text
    Abstract Particle migration dynamics in viscoelastic fluids in spiral channels have attracted interest in recent years due to potential applications in the 3D focusing and label-free sorting of particles and cells. Despite a number of recent studies, the underlying mechanism of Dean-coupled elasto-inertial migration in spiral microchannels is not fully understood. In this work, for the first time, we experimentally demonstrate the evolution of particle focusing behavior along a channel downstream length at a high blockage ratio. We found that flow rate, device curvature, and medium viscosity play important roles in particle lateral migration. Our results illustrate the full focusing pattern along the downstream channel length, with side-view imaging yielding observations on the vertical migration of focused streams. Ultimately, we anticipate that these results will offer a useful guide for elasto-inertial microfluidics device design to improve the efficiency of 3D focusing in cell sorting and cytometry applications

    Transcriptomic and metabolomic analyses revealed regulation mechanism of mixotrophic Cylindrotheca sp. glycerol utilization and biomass promotion

    No full text
    Abstract Background Diatoms have been viewed as ideal cell factories for production of some high-value bioactive metabolites, such as fucoxanthin, but their applications are restrained by limited biomass yield. Mixotrophy, by using both CO2 and organic carbon source, is believed effective to crack the bottleneck of biomass accumulation and achieve a sustainable bioproduct supply. Results Glycerol, among tested carbon sources, was proved as the sole that could significantly promote growth of Cylindrotheca sp. with illumination, a so-called growth pattern, mixotrophy. Biomass and fucoxanthin yields of Cylindrotheca sp., grown in medium with glycerol (2 g L−1), was increased by 52% and 29%, respectively, as compared to the autotrophic culture (control) without compromise in photosynthetic performance. As Cylindrotheca sp. was unable to use glycerol without light, a time-series transcriptomic analysis was carried out to elucidate the light regulation on glycerol utilization. Among the genes participating in glycerol utilization, GPDH1, TIM1 and GAPDH1, showed the highest dependence on light. Their expressions decreased dramatically when the alga was transferred from light into darkness. Despite the reduced glycerol uptake in the dark, expressions of genes associating with pyrimidine metabolism and DNA replication were upregulated when Cylindrotheca sp. was cultured mixotrophically. Comparative transcriptomic and metabolomic analyses revealed amino acids and aminoacyl-tRNA metabolisms were enhanced at different timepoints of diurnal cycles in mixotrophic Cylindrotheca sp., as compared to the control. Conclusions Conclusively, this study not only provides an alternative for large-scale cultivation of Cylindrotheca, but also pinpoints the limiting enzymes subject to further metabolic manipulation. Most importantly, the novel insights in this study should aid to understand the mechanism of biomass promotion in mixotrophic Cylindrotheca sp
    corecore